
1 | P a g e

Test Automation Made Easy

USER MANUAL OF WEB IDE

Accelerate, Improve and Plan success with an economical

code.

https://www.nimbal.io/

2 | P a g e

INDEX

Sr No. Content Description Page No.

1. INTRODUCTION 3

2. PRE-REQUISITE 3

3. CREATING TEST CASES 3

4. CODES AND TEST CASES 3 -8

 • Run 1: Running Happy Path Scenario IDE Approach

 • Run 2: Running Negative Path Scenario IDE Approach

 • Run 3: Running the whole feature

 • Tags Used+++

5. RUNNING TESTS USING TAGS 8-13

6. REPORTS 13-17

 • Reviewing Reports

7. REFERENCES 17

3 | P a g e

INTRODUCTION

Testing is the method of evaluating and verifying that a software program product or utility does what

it is meant to do. The advantages of testing is finding and getting rid of bugs, decreasing development

fees, and enhancing performance.

Involvement of testers in requirement critiques and consumer tale refinement- Involving testers at

some stage in the requirement segment guarantees identity of a number of the requirement defects

even earlier than their implementation. It considerably reduces the solving cost. Also, the tester profits

considerable task perception at this stage, it turns to facilitate him in the execution segment of the

task.

PRE-REQUISITE

1. Knowledge of XPath

2. Basics of Testing concepts

3. Access to Nimbal Web IDE i.e., its URL, such as nimbal-webide.getskills.co.nz

4. Your browser should have the following programs installed

1. Selector Hub : it is a helper browser extension, which gives us prebuilt XPath.

2. ChroPath: it is an alternative extension for XPath.

CREATING TEST CASES

Let us create a new feature page and test the following cases using some scenarios/cases

Follow the steps below to create a new file

1. Click on the file’s icon.

2. Navigate to src > java > feature.

3. A dialog box will appear and will ask for the name of the new file enter any name with login.

feature extension

For example- login. feature for login related feature test scenarios as shown in the below

screenshot

https://www.w3schools.com/xml/xpath_intro.asp
https://www.geeksforgeeks.org/software-engineering-automated-testing/
nimbal-webide.getsills.co.nz
https://chrome.google.com/webstore/detail/selectorshub-xpath-plugin/ndgimibanhlabgdgjcpbbndiehljcpfh
https://chrome.google.com/webstore/detail/chropath/ljngjbnaijcbncmcnjfhigebomdlkcjo

4 | P a g e

Figure 1: Path to the file

CODES AND TEST CASES

Setting up the project configuration

We need to add some properties in the following files in Web IDE

1. config.dev.properties : Located at /home/project/src/test/resources/env/config.dev.properties

Add the following values as shown below in Figure 4

a. app.gmail = gmail.com

instead of gmail, you can replace it with any constant value of your concern. For

 example, app.website = www.website.com

b. web.browser=chromeheadless

Specified which browser to the user for running the test. other values possible are firefox

Figure 2: config.dev.properties

2. locators.json : Located at /home/project/src/test/resources/locators.json .We will use this file to

add XPath key pair values, while key will be user understandable keyword and value will be an

XPath, which is used to locate an HTML element within a webpage. For example, XPath for

http://www.website.com/

5 | P a g e

inputting email id in gmail.com page will be //input[@id='identifierId'] as shown below in Figure

2.

Figure 3: illustrates how to choose the XPath through Selectors Hub

Therefore, the locators.json file will look something like the below after making changes

Figure 4: locator.json file after adding XPath for Gmail input location from Gmail.com

3. TestRunner.java: Located at /home/project/src/test/java/TestRunner.java it is a file used to

indicate which tests need to be run using tags. A tag can be placed on a scenario/test or a feature.

It usually starts “@” keyword.

For example,

1. Figure 6 depicts the functioning of the TestRunner.java file and the tag provided in the tags

section written at line number 14 as

tags={“@gmailLoginNegativePath”}

Later we will replace this tag to run the tests we want to execute.

6 | P a g e

2. If tags are empty then the TestRunner.java file will run all the feature files present in the

project as shown below

tags={“”}

Figure 5: TestRunner.java file

Ways to run the test.feature file

1. Right-click on the TestRunner.java file and click Run. The results will be shown in

the terminal.

7 | P a g e

Figure 6:Running a test case

2. In the terminal, enter mvn install command and it will show the results in the

terminal.

Figure 7:TestRunner.java

Run 1: Running Happy Path Scenario

Following is the code is written for the Negative path as shown in code snippet 1. Happy path test is a

well-defined test case using known input, which executes without exception and produces an expected

output.

8 | P a g e

Feature: Login in the app

@gmailLoginHappyPath

Scenario: Login in the Gmail- Happy path

Given I open gmail.com

And I fill input email_inp with abcd123

And I fill input password_inp with 123@abcd

And I click element login_btn

And I can see the text "Compose"

Code Snippet 1: Happy Path for Gmail Login

Figure 8: Reference image in Web IDE Happy Path

Explanation of the Code

1. Title of the Feature, always start with Feature Keyword

2. The keyword of the whole case (No need to write the complete code for testing just enter the keyword)

3. Description of the code

4. The user opens the URL gmail.com

5. Then users enter the data as abcd123 in the email field (fill input is a keyword for giving input)

6. Then users enter the data as 123@abcd in the password field (fill input is a keyword for giving input)

7. Then by clicking the login_btn (Button named Login)

8. User login successful can view the compose button

9 | P a g e

Run 2: Running Negative Path Scenario

Following is the code is written for the Negative path as shown in code snippet 2. Negative testing

ensures that your application can gracefully handle invalid input or unexpected user behavior.

@gmailLoginFeature

Feature: Login in the app

@gmailLoginNegativePath

Scenario: Login in the Gmail- Negative path

Given I open gmail.com

And I fill input email_inp with abcd123

And I fill input password_inp with 123@abcd

And I click element login_btn

And I check the message "Wrong password. Try again or click ‘Forgot password’ to

 reset it."
Code Snippet 2: Negative Path for Gmail Login

Figure 9: Reference image in Web IDE for Negative path

Explanation of the Code

10 | P a g e

1. The keyword of the whole case (No need to write the complete code for testing just enter the keyword)

2. Title

3. The keyword of case 2(No need to write the complete code for testing just enter the keyword)

4. Description of the code

5. The user opens the URL gmail.com

6. Then users enter the data as abcd123 in the email field (fill input is a keyword for giving input)

7. Then users enter the data as 123@abcd in the password field (fill input is a keyword for giving input)

8. Then by clicking the login_btn (Button named Login) User login successful, can view the message "Wrong

password. Try again or click ‘Forgot password’ to reset it."

Run 3: Running the whole feature

Following is the complete code for our feature. Which can be executed by the adding tag

@gmailLoginFeature in the TestRunner.java file.

@gmailLoginFeature

Feature: Login in the app

@gmailLoginHappyPath
Scenario: Login in the Gmail- Happy path
Given I open gmail.com
And I fill input email_inp with abcd123
And I fill the input password with 123@abcd
And I click element login_btn
And I can see the text "Compose"

@gmailLoginNegativePath
Scenario: Login in the Gmail- Negative path
Given I open gmail.com
And I fill input email_inp with abcd123
And I fill input password_inp with 123@abcd
And I click element login_btn
And I check the message "Wrong password. Try again or click ‘Forgot password’ to
 reset it."

Code Snippet 3: complete feature file code

11 | P a g e

Figure 10: Reference image in Web IDE for complete code

RUNNING TEST USING TAGS

There are two components to understand how to run tests (features/scenarios) by tags

1. Tags:

Various tags are used in feature files. We can identify a tag as a group of features or a group of

scenarios or a group of both features and tags. Depending on a tester.

For example, in login.feature file above files we have used the following tags

• @gmailLoginFeature – To execute complete feature

• @gmailLoginHappyPath – To execute the happy path scenario

• @gmailLoginNegativePath – To execute the negative path scenario

2. TestRunner.java file:

It is used for running the test with the help of tags. Every feature and scenario has a tag associated

with it. We will insert this tag in the TestRunner.java file and run the program to get the desired

outcome of the test using reports.

Following is the way to utilize the TestRunner.java file to run the tests.

12 | P a g e

1. Click on the file’s icon. Navigate to src > java > TestRunner.java

Figure 11: Test case Runner

2. In any pre-created tag can be used for the test by taking any Tag from an existing code then

writing it in the place of “@AddYourTagHere”

For example tags = {“@gmailLoginFeature”}

Here the tag @gmailLoginFeature is used.

13 | P a g e

Figure 13: Generated Report -JSON

REPORTS

The report is generated each time when the user runs a tag using the maven command or by running

right click on the TestRunner.java file.

1. The report generated can be seen under the targets folder that is located at

/home/project/target.

14 | P a g e

2. The json reports are found at /home/project/target/json-cucumber-reports.

Figure 14: Generated Report -JSON

3. The generated HTML report is found at /home/project/target/generated-report.

4. If any test fails the auto-generated report then render’s clarity where it is failing, one can see

the captured screenshots at /home/project/target/generated-report/attachments

Figure 15: Screenshots in auto-generated report

15 | P a g e

 It shows the page that we are getting on login.

Reviewing Report

1. Right-click on target/generated-report as shown below

Figure16: Auto-generated report

2. A file will be downloaded as shown below

Figure17: Download the auto-generated report

16 | P a g e

3. Extract this file in your folder as shown below

Figure18: Extract to auto-generated report

4. After the extraction, a folder name generated-report will appear in the same directory as

shown below,

Figure 19: Downloaded file

5. Inside this folder open the index file in the browser to see the report.

17 | P a g e

Figure 20: Screenshots in auto-generated report

6. Here is example of the report shown below

Figure 21: Scenario

18 | P a g e

REFERENCES

www.javatpoint.com

www.w3schools.com

www.geeksforgeeks.com

http://www.javatpoint.com/
http://www.w3schools.com/
http://www.geeksforgeeks.com/

