1|Page

NIMBAL

Test Automation Made Easy

USER MANUAL OF WEB IDE

Accelerate, Improve and Plan success with an economical
code.

https://www.nimbal.io/

2|

INDEX

Sr No. Content Description Page No.
1. | INTRODUCTION 3
2. | PRE-REQUISITE 3
3. | CREATING TEST CASES 3
4. | CODES AND TEST CASES 3-8

e Run 1: Running Happy Path Scenario IDE Approach
e Run 2: Running Negative Path Scenario IDE Approach
e Run 3: Running the whole feature
e Tags Used+++
5. RUNNING TESTS USING TAGS 8-13
6. REPORTS 13-17
e Reviewing Reports
7. | REFERENCES 17

3|

INTRODUCTION

Testing is the method of evaluating and verifying that a software program product or utility does what
it is meant to do. The advantages of testing is finding and getting rid of bugs, decreasing development
fees, and enhancing performance.

Involvement of testers in requirement critiques and consumer tale refinement- Involving testers at
some stage in the requirement segment guarantees identity of a number of the requirement defects
even earlier than their implementation. It considerably reduces the solving cost. Also, the tester profits
considerable task perception at this stage, it turns to facilitate him in the execution segment of the
task.

PRE-REQUISITE

1. Knowledge of XPath
2. Basics of Testing concepts
3. Access to Nimbal Web IDE i.e., its URL, such as nimbal-webide.getskills.co.nz
4, Your browser should have the following programs installed
1. Selector Hub : it is a helper browser extension, which gives us prebuilt XPath.
2. ChroPath: it is an alternative extension for XPath.
CREATING TEST CASES

Let us create a new feature page and test the following cases using some scenarios/cases
Follow the steps below to create a new file

Click on the file’s icon.

Navigate to src > java > feature.
A dialog box will appear and will ask for the name of the new file enter any name with login.
feature extension

For example- login. feature for login related feature test scenarios as shown in the below
screenshot

https://www.w3schools.com/xml/xpath_intro.asp
https://www.geeksforgeeks.org/software-engineering-automated-testing/
nimbal-webide.getsills.co.nz
https://chrome.google.com/webstore/detail/selectorshub-xpath-plugin/ndgimibanhlabgdgjcpbbndiehljcpfh
https://chrome.google.com/webstore/detail/chropath/ljngjbnaijcbncmcnjfhigebomdlkcjo

4|

“ [l SIC
“ [test

~ [java

~ [features
@ login_feature

Figure 1: Path to the file

CODES AND TEST CASES

Setting up the project configuration

We need to add some properties in the following files in Web IDE
1. config.dev.properties : Located at /home/project/src/test/resources/env/config.dev.properties
Add the following values as shown below in Figure 4
a. app.gmail = gmail.com

instead of gmail, you can replace it with any constant value of your concern. For

example, app.website = www.website.com

b. web.browser=chromeheadless
Specified which browser to the user for running the test. other values possible are firefox

Debug Terminal Help

web feature config. dewv_ properties >< locators_json
u i

S gmail . com

n kWM

hromeheadless

Figure 2: config.dev.properties

2. locators.json : Located at /fhome/project/src/test/resources/locators.json .We will use this file to
add XPath key pair values, while key will be user understandable keyword and value will be an
XPath, which is used to locate an HTML element within a webpage. For example, XPath for

http://www.website.com/

5|Page

inputting email id in gmail.com page will be //input[@id="identifierld'] as shown below in Figure
2.

Signin

to continue to Gmail
Email O phone s —— y

Emoji

Forgot email?

Not your computer? Use

Learn more

Create account le Ctrl+A /4¢

Spell check //input(

Writing Direction XPath Training e
SelectorsHub Certificate |

SelectorsHub }’at'

Copy Rel XPath

English (United Kingdom) + Inspect Copy Rel cssSelector

= i e

Figure 3: illustrates how to choose the XPath through Selectors Hub

Therefore, the locators.json file will look something like the below after making changes

File Edit Selection View Go Debug Terminal Help

EXPLORER: PROJECT ¢ a - windows.feature web.feature locators.json X TestRunnerjava
VTS At RNy . E|

Ik SqlServerSteps "login": {

¢ TestRunner.java 3 "email_inp":"//input[@id='identifierId']"
v @B resources
> I config
v Benv

1it config.dev.properties

Figure 4: locator.json file after adding XPath for Gmail input location from Gmail.com

3. TestRunner.java: Located at /home/project/src/test/java/TestRunner.java it is a file used to
indicate which tests need to be run using tags. A tag can be placed on a scenario/test or a feature.
It usually starts “@” keyword.

For example,
1. Figure 6 depicts the functioning of the TestRunner.java file and the tag provided in the tags
section written at line number 14 as
tags={“@gmailLoginNegativePath”}

Later we will replace this tag to run the tests we want to execute.

6|

2. |If tags are empty then the TestRunner.java file will run all the feature files present in the
project as shown below
tags:{””}

EXPLORER: PROJECT ol wir ¥ web.feature r TestRunner.java x

e

B t cucumber.api.CucumberOptions;
SqlServerSteps

cucumber.api.junit.Cucumber;
TestRunner.java m org.junit.AfterClass;
v [resources nport org.junit.runner.RunWith;
> Il config
@RunWith(Cucumber.class)
@CucumberOptions(
features

glue = {"c skills.auto.appsteps”},
> B platformJar 1 dryRun = f

v env
ti! config.dev.properties
> m getskills

& data.json plugin
E locators.json
© log4j2.xmi

e target

> I failsafe-reports

> @ generated-report

> B generated-test-sources

> [json-cucumber-reports @AfterClass
> [junit-cucumber-reports Iblic static void tearoo@

> 8 logs {

TestRunner

> I maven-archiver N

Figure 5: TestRunner.java file

Ways to run the test.feature file

1. Right-click on the TestRunner.java file and click Run. The results will be shown in
the terminal.

7|

EXPLORER

v PROJECT

D @ performance.feature

@ security feature

@ web_nimbal.feature
@ web.feature
@ windows feature
> I steps
4 TestRunner.java
~ [resources
~ I config
config.properties
menv
config.dev.properties
> B getskills
> I platformJar
E datajson
£ locators.json
< log4j2.xml
~ I target
> W failsafe-reports
~ I generated-report
> I attachments

config.dev

cucumber . api.CucumberOptions;

cucumber. api.junit.Cucumber;
~t org.junit.AfterClass;

org.junit.runner.RunWith;

@RunWith(Cucumber.class)
@Cucumberopt

features

glue =

dryRun = fal

Runner
Terminal 0 X ug Console

ip-10-121-85-83:/home/project# cd

root@ip-10-121-85-83;/home# git clone https://aatishad@bitbucket.c

Cloning into 'raise-auto'...

Password for ‘https://aatishas@bitbucket.org’:
remote: Enumerating objects: 319, done.

remote: Counting objects: 18@% (319/319), done.
remote: Compressing objects: 1@@% (225/225), done.
r © Tatal 2 1ta 1 P

Figure 6:Running a test case

159 (delta 59

nUp.feature

Cirl+F11
Ctri+F12

Go to Definition

Go to Implementations
Shift+F12

Ctrl+Shift+O

Go to References
Go to Symbol...

Go to Type Definition
Peek

Ctri+F2
Alt+Shift+F
Ctri+K, Ctrl+F
Ctri+Shift+R

Change All Occurrences
Format Document
Format Selection
Refactor...

Rename Symbol F2

Source Action. .

Redo Cirl+Shift+Z
Undo Ctrli+Z

History
Toggle Blame Annotations

Cut
Copy

Paste

Run

Debug

2. In the terminal, enter mvn install command and it will show the results in the

terminal.

File Edit Selection View Go Debug

EXPLORER

> W staps
TestRunnecjava M
v I rosources
> m config
> . eny
W getskills

> W platformJar

W datajson root@ip

v I targat
> I -repons
> BB genarated-repon

10 DEN

Terminal Help

t cucumber.api.CucumberOptions;
cucumber. apl. junit.Cucumber;
org.junit.AfterClas
org. Junit.runner.RunWith;

th(Cucumber.class)

features

glue = {
dryRun
plugin =

Terminal 0 X

85-8 ome/projects

Figure 7:TestRunner.java

Run 1: Running Happy Path Scenario

Following is the code is written for the Negative path as shown in code snippet 1. Happy path test is a
well-defined test case using known input, which executes without exception and produces an expected
output.

8|

Feature: Login in the app

@gmailloginHappyPath

Scenario: Login in the Gmail- Happy path
I open gmail.com
fill input email inp with abcd123
fill input password inp with 123@abcd
click element login_btn
can see the text "Compose"

Code Snippet 1: Happy Path for Gmail Login

File Edit Selection View Go Run Terminal Help

@ EXPLORER =+ login.feature X

S OPENEDITORS ava > features > demo > @ login.feature

ilLoginHappyPath
io: Login in the gmail- Happy path
n I ope il.com
h abcdi2
p with
btn

¢
@
@
@
@
@
@
@
L
¢
@y
@
¢
@
@

ated_diagnostic

Figure 8: Reference image in Web IDE Happy Path

Explanation of the Code

Then by clicking the login_btn (Button named Login)

1. Title of the Feature, always start with Feature Keyword

2. The keyword of the whole case (No need to write the complete code for testing just enter the keyword)
3. Description of the code

4, The user opens the URL gmail.com

5. Then users enter the data as in the email field (fill input is a keyword for giving input)

6. Then users enter the data as abcd in the password field (fill input is a keyword for giving input)

7.

8.

User login successful can view the compose button

9|

Run 2: Running Negative Path Scenario

Following is the code is written for the Negative path as shown in code snippet 2. Negative testing

ensures that your application can gracefully handle invalid input or unexpected user behavior.

@gmailloginFeature
Feature: Login in the app

@gmaillLoginNegativePath
Scenario: Login in the Gmail- Negative path

Given I open gmail.com

And I fill input email inp with abcd123

And I fill input password_inp with 123@abcd

And I click element login_btn

And I check the message "Wrong password. Try again or click €‘Forgot password’ to
reset it."

Code Snippet 2: Negative Path for Gmail Login

File Edit Selection View Go Run Terminal Help

@ EXPLORER * login feature X

> OPENEDITORS src) test » es » dema > @ loginfeature

integativePath
gin in the gmail- Negative path
Given I open gmail.com
And I fill input email_inp with abcdi23
And I fill input jord_inp with 123@abcd
And T click element login_btn

And T check the mese Wrong password. Try again or click ‘Forgot password’ to reset it."

Figure 9: Reference image in Web IDE for Negative path

Explanation of the Code

10 |

1. The keyword of the whole case (No need to write the complete code for testing just enter the keyword)
2. Title

3. The keyword of case 2(No need to write the complete code for testing just enter the keyword)

4. Description of the code

5. The user opens the URL gmail.com

6. Then users enter the data as in the email field (fill input is a keyword for giving input)

7. Then users enter the data as abcd in the password field (fill input is a keyword for giving input)

8.

Then by clicking the login_btn (Button named Login) User login successful, can view the message

Run 3: Running the whole feature

Following is the complete code for our feature. Which can be executed by the adding tag
@gmailLoginFeature in the file.

@gmaillLoginFeature
Feature: Login in the app

@gmailloginHappyPath

Scenario: Login in the Gmail- Happy path
I open gmail.com
fill input email_inp with abcd123
fill the input password with 123@abcd
click element login_btn
can see the text "Compose"

@gmaillLoginNegativePath

Scenario: Login in the Gmail- Negative path

Given I open gmail.com

And I fill input email_inp with abcd123

And I fill input password_inp with 123@abcd

And I click element login_btn

And I check the message "Wrong password. Try again or click €‘Forgot password’ to
reset it."

Code Snippet 3: complete feature file code

11|

File Edit Selection View Go Run Terminal Help
EXPLORER ** loginfeature X

> OPENEDITORS sic) test) java) features D demo > @ login.feature
\ v PROECT 1 @gmailloginFeature
if v I 2 Feature: Login in the app

illoginhegativePath
0: Login in the gmail- Negative path
Given I open gmail.com
And I fill input email inp with abcdi23
And T fill input password inp with 123@abcd
And T click element login_btn
And T check the message “"Wrong password. Try again or click ‘Forgot password’ to reset it."

@gmailloginHappyPath

Scenario: Login in the gmail- Happy path
Given I open gmail.com

And T fill input email inp with abcdi23
And T fill input password inp with 123@abcd
And T click element login_btn

And T can see text “Compose”

]
[}
¢
8
[]
9
¢
¢
[}
@ log
@ 1o
9§ s
[
[}
¢ w

Figure 10: Reference image in Web IDE for complete code

RUNNING TEST USING TAGS

There are two components to understand how to run tests (features/scenarios) by tags

1. Tags:

Various tags are used in feature files. We can identify a tag as a group of features or a group of
scenarios or a group of both features and tags. Depending on a tester.

For example, in login.feature file above files we have used the following tags

e @gmailLoginFeature — To execute complete feature

e @gmailLoginHappyPath — To execute the happy path scenario

e @gmailLoginNegativePath — To execute the negative path scenario

2. TestRunner.java file:

It is used for running the test with the help of tags. Every feature and scenario has a tag associated
with it. We will insert this tag in the TestRunner.java file and run the program to get the desired
outcome of the test using reports.

Following is the way to utilize the TestRunner.java file to run the tests.

12|

1.

Click on the file’s icon. Navigate to src > java > TestRunner.java

TestRunner java =

2.

cucumber.api.CucumberOptions;
cucumber.api.junit.Cucumber;
t org.junit.AfterClass;

org.junit.runner.Runkith;

@RunWith{Cucumber.class)
@CucumberOptions{
features 4 "t
glue = { retskills.auto.appsteps™},
dryRun =
plugin = E : [fjson-cucumber-repor
cucumbe:
cucumber

s TestRunner

atic wvoid tearDown()

Figure 11: Test case Runner

In any pre-created tag can be used for the test by taking any Tag from an existing code then

writing it in the place of “@AddYourTagHere”

For example tags = {“@gmailLoginFeature”}

Here the tag @gmaillLoginFeature is used.

13|

TestRunnerjava =
cucumber.api.CucumberOptions;
cucumber.api.junit.Cucumber;
org.junit.AfterClass;
org.junit.runner.Runkith;

@RunkWith({Cucumber.class)
fCucumberdptions(
teatures
glue = {
dryRun =
plugin =
ur CuCum

unit-cucumb

re"H

= TestRunner

void tearDown()

Figure 13: Generated Report -JSON
REPORTS

The report is generated each time when the user runs a tag using the maven command or by running
right click on the TestRunner.java file.

1. The report generated can be seen under the targets folder that is located at
/home/project/target.

14| Page

2. The json reports are found at /home/project/target/json-cucumber-reports.

EXPLORER TestRunnerj

~ PROJECT i "t cucumber.api.CucumberOptions;
USSR L A impo cucumber.api.junit.Cucumber;
> I config 3 i org.junit.AfterClass;
> B env i rt org.junit.runner.RunWith;
> B getskills
> I platformJar

€ data.json

@RunWith(Cucumber.class)
@CucumberOptions (
features
c glue = aliFa k Tie
<> log4j2.xml 0 dryRun alse
v B target plugin j i ucum eport

> B failsafe-reports 12 "J rge cucumber-reports/c

locators json

> I generated-report ts/cukejunit.html™},

® generated-test-sources tags =
> @ json-cucumber-reports.
> B junit-cucumber-reports
> @ maven-archiver
> I maven-status
> I test-classes
getskills-automation-1.9.4 jar

> B TreeReportUpload source JSON report directory /home/project/target/json-cucumber-reports
.gitignore generated HTML report directory : /home/project/target/generated-report

I auto-platform-1.9.3.pom
expand before/after hooks
core.20211124.135143.390.0001.dmp e S [pedlis
I core.20211124.142024.11530.0001.dmp expand doc strings

B i ANN41494 AA99EO 24400 AANA Adran

v JAVA DEPENDENCIES

Er\% > Wl getskills-automation

Figure 14: Generated Report -JSON

3. The generated HTML report is found at /home/project/target/generated-report.
4. If any test fails the auto-generated report then render’s clarity where it is failing, one can see
the captured screenshots at /home/project/target/generated-report/attachments

Google
Sign in

to continue to Gmail

[

Forgot email?

our computer? est mode to sign in privately.
Learn more

Create account m

English (United States) -

Figure 15: Screenshots in auto-generated report

15| Page
It shows the page that we are getting on login.

Reviewing Report

1. Right-click on target/generated-report as shown below

-
tenant-becdd1bc-749280223 ap-south-1.g|

G |ﬁ A Mot secure

File Edit Selection View Go Debug Teminal Help

EXPLORER
~ PROJECT

test name
I open app app.gn

> I build
> Mmlogs
> IysiC

[target

> [failsafe-reports

> Im generated-report
New File

New Folder

- gEIIeIi’lHu-lESl—:iOull;eS
I json-cucumber-reporis
M junit-cucumber—reports Open in Terminal
i logs 5
=) Compare With...

I maven-archiver

Select for Compare
I maven-status
Find in Folder

History

I surefirereports
> B testclasses
getskills-automation-1.9....
> m TreeReportUpload
_gitignore
I auto-platform-1.9.3. pom
B core.20211124.135143
I core 20211124.142024.
I core 20211124 142259
I core 20211124.142300_... U
B core.20211124.142321.._ U

Copy Ctr+C
Paste
Copy Path

Copy Relative Path

Alt+Shift+C
Ctri+K, Cir+Shift+C
Copy Download Link
Upload Files...

Download

[core. 2021124175002
getskillsautomation. iml
I heapdump_ 20211124 1___
I heapdump.20211124.1__.

B heapdump.20211124.1

Delete Delete
Duplicate

Rename F2

Generate _editorconfig

Figurel6: Auto-generated report

2. A file will be downloaded as shown below

3 Quick access
[Desktop

%=| Decuments
4 Downloads
| Pictures

Q OneDrive - DENS Gr

+ &> This

PC

Name

- Yesterday (5)

Date modified

@ meetingAttendanceReportitest runner) (1)
@ meetingAttendanceReport(test runner)
{2} 93.0.4577.63_chrome_installer

Application

generated-report.tar

TAR File

iy ChromeSetup

Application

Figurel7: Download the auto-generated report

16 |

3. Extract this file in your folder as shown below

generated-repg

L5 ChromeSetup
Earlier this weg

@ Documentatior, @

Open with
Compare using MobaDiff
Edit with MobaTextEditor

Move to Onelrive
—

@ Documentatiol

Last week (22) i
GrammarlyAdd =

| jdk-17_window:
| jodk-17_window:
£ haxm-windows
app-debug.apk

3. Appium-Inspec
9 Appium-Server
android-studio;

¢ apache-maven
| & jdk-11.0.3_wind
Grammarlylnst:
I Manisha Arora
@ Manisha Arora

CRC SHA
Edit with Notepad++
Share

Give access to

Restore previous versions
Send to

Cut

Copy

Create shortcut

Delete

Rename

Properties

Open archive
Open archive
Extract files...

Extract Here

Extract to "generated-report\”

Test archive

Add to archive...

Compress and email...

Add to "generated-report_2.7z"

Cornpress to "generated-report_2.7z" and email
Add to "generated-report_2.zip"

Compress to "generated-report_2.zip" and email

[== T == -

4. After the extraction, a folder name generated-report will appear in the same directory as

shown below,

Figurel8: Extract to auto-generated report

¥ > ThisP

7 Quick access
[Desktop

= Documents

C Downloads

MNare

Today (1)

generated-report

Date modified

Figure 19: Downloaded file

5. Inside this folder open the index file in the browser to see the report.

= | generated-report

Home Share View

v » This PC » Downloads » generated-report

MName Date modified Type

3 Quick access
[Desktop

=] Documents
‘r Downloads

attachments 11/24/2 File folder
css 117247 : File folder
font 11724/ : File folder
js 11/24/202 M File folder
| Pictures 1172472021 1:15 PM File folder

Q OneDrive - DENS Gr o 00 PM Microsoft Edge H...
pen

@™ OneDrive - DENS Gro eECOmpaTE memg e
Microsoft Teams CF - Edit with MobaTextEditor

MNotebooks @ Move to OneDrive
7-Zip

CRC SHA

Edit with Notepad++

[This PC
J 3D Objects

Figure 20: Screenshots in auto-generated report

6. Here is example of the report shown below

") file:///C:f Users/mani nerated t/indexhtml
P

Scenario Summary All Features All Tags Scenario Sequence

All Scenarios

Scenario Result Chart Scenario Summary

N possed [failed skipped 5
1 Scenario(s)

1w 0Ox 0

Duration: 1m 08s 736ms

ssed Scenarios

% | entries Search:

Feature T Scenario Duration

Login in the app Login in the Gmail - Happy path m 085 736ms

2021/11/24 12:10:23

Figure 21: Scenario

18 |

REFERENCES

wwWw.javatpoint.com

www.w3schools.com

www.geeksforgeeks.com

http://www.javatpoint.com/
http://www.w3schools.com/
http://www.geeksforgeeks.com/

